Impacto Técnico de Estaciones de Carga Rápida en una Red de Distribución Urbana Ecuatoriana Technical Impact of Fast-Charging Stations on an Ecuadorian Urban Distribution Network

Contenido principal del artículo

Byron Santiago Rendon Espinoza
Silvia Virginia Taipe Quilligana
Washington Omar Parrales Villigua
Milton Geovanny Cuenca Cabrera

Resumen

Esta investigación analiza los efectos técnicos y operativos de la integración de estaciones de carga rápida para vehículos eléctricos en el alimentador de distribución San José Sur de la subestación Quevedo Sur. Las simulaciones detalladas demuestran que la adición de tres electrolineras incrementa la carga total del alimentador en aproximadamente un 11,9% (de 4187,44 kVA a 4686,25 kVA) y las pérdidas eléctricas en un 22% (de 214,54 kVA a 261,72 kVA). El factor de potencia permanece superior al 96% y la red cumple la normativa nacional de tensión, excepto por un evento puntual de subtensión. Los aumentos de pérdidas y cargabilidad se concentran en los tramos más cercanos a las estaciones de carga, evidenciando la importancia de una planificación detallada por ubicación. El estudio emplea modelado de sistemas eléctricos (CYMDIST), datos operativos reales y simulaciones multiescenario, triangulando los resultados con código nacional y bibliografía internacional. Los hallazgos confirman que una penetración inicial de vehículos eléctricos es viable, pero subrayan la necesidad de actualizar la red y gestionar la carga de manera inteligente para garantizar calidad y fiabilidad sostenidas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Rendon Espinoza, B. S., Taipe Quilligana, S. V., Parrales Villigua, W. O., & Cuenca Cabrera, M. G. (2025). Impacto Técnico de Estaciones de Carga Rápida en una Red de Distribución Urbana Ecuatoriana: Technical Impact of Fast-Charging Stations on an Ecuadorian Urban Distribution Network. Revista Científica Multidisciplinar G-Nerando, 6(2), Pág. 1507 –. https://doi.org/10.60100/rcmg.v6i2.777
Sección
Artículos

Citas

Badugu, J., Sandhya, G., Nageswarareddy, G., & Kumar, K. V. (2024). Minimizing electric vehicle charging costs in the microgrid using the BFGS Quasi-Newton Method. E3S Web of Conferences, 472, 01015. https://doi.org/10.1051/e3sconf/202447201015

Bernal-Vargas, J. B., Castro-Galeano, J. C., Tibaduiza-Rincón, E. E., López-Lezama, J. M., & Muñoz-Galeano, N. (2023). Prospective Analysis of Massive Integration of Electric Vehicle Chargers and Their Impact on Power Quality in Distribution Networks. World Electric Vehicle Journal, 14(12), 324. https://doi.org/10.3390/wevj14120324

Bommana, B., Kumar, J. S. V. S., Nuvvula, R. S. S., Kumar, P. P., Khan, B., Muthusamy, S., & Inapakurthi, R. (2023). A Comprehensive Examination of the Protocols, Technologies, and Safety Requirements for Electric Vehicle Charging Infrastructure. Journal of Advanced Transportation, 2023, 1–26. https://doi.org/10.1155/2023/7500151

Chavhan, S., Zeebaree, S. R. M., Alkhayyat, A., & Kumar, S. (2022). Design of Space Efficient Electric Vehicle Charging Infrastructure Integration Impact on Power Grid Network. Mathematics, 10(19), 3450. https://doi.org/10.3390/math10193450

Fatima, S., Püvi, V., Lehtonen, M., & Pourakbari‐Kasmaei, M. (2024). A review of electric vehicle hosting capacity quantification and improvement techniques for distribution networks. IET Generation, Transmission & Distribution, 18(6), 1095–1113. https://doi.org/10.1049/gtd2.13010

He, L., He, J., Zhu, L., Huang, W., Wang, Y., & Yu, H. (2022a). Comprehensive evaluation of electric vehicle charging network under the coupling of traffic network and power grid. PLOS ONE, 17(9), e0275231. https://doi.org/10.1371/journal.pone.0275231

He, L., He, J., Zhu, L., Huang, W., Wang, Y., & Yu, H. (2022b). Comprehensive evaluation of electric vehicle charging network under the coupling of traffic network and power grid. PLOS ONE, 17(9), e0275231. https://doi.org/10.1371/journal.pone.0275231

Kene, R. O., & Olwal, T. O. (2023). Energy Management and Optimization of Large-Scale Electric Vehicle Charging on the Grid. World Electric Vehicle Journal, 14(4), 95. https://doi.org/10.3390/wevj14040095

K. K., N., N. S., J., & Jadoun, V. K. (2025). Optimization of distribution network operating parameters in grid tied microgrid with electric vehicle charging station placement and sizing in the presence of uncertainties. International Journal of Green Energy, 22(8), 1552–1569. https://doi.org/10.1080/15435075.2023.2281334

Kumar, A., & Chin, D. (2024a). Analyzing EV User Behavior in Aggregator Smart Charging with ESS and Real-Time Pricing. Qeios. https://doi.org/10.32388/2SDPK4.2

Kumar, A., & Chin, D. (2024b). Evaluating EV User Behavior on Aggregator Smart Charging with ESS and Real-Time Pricing-Based Demand Response. Qeios. https://doi.org/10.32388/2SDPK4

Mohammed, A., Saif, O., Abo-Adma, M., Fahmy, A., & Elazab, R. (2024). Strategies and sustainability in fast charging station deployment for electric vehicles. Scientific Reports, 14(1), 283. https://doi.org/10.1038/s41598-023-50825-7

Sandström, M., Huang, P., Bales, C., & Dotzauer, E. (2023). Evaluation of hosting capacity of the power grid for electric vehicles – A case study in a Swedish residential area. Energy, 284, 129293. https://doi.org/10.1016/j.energy.2023.129293

Syed Nasir, S., Jamian, J., Ayop, R., & Mustafa, M. (2021). Enhancing power loss by optimal coordinated extensive CS operation during off-peak load at the distribution system. E3S Web of Conferences, 231, 01003. https://doi.org/10.1051/e3sconf/202123101003

Wallison, D., Haylow, L., Wert, J., Snodgrass, J. M., Overbye, T. J., Yanzhi, & Xu. (2025). Electric Vehicle Integration using Large-Scale Combined Transmission and Distribution Grid Models.

Xue, P., Xiang, Y., Gou, J., Xu, W., Sun, W., Jiang, Z., Jawad, S., Zhao, H., & Liu, J. (2021). Impact of Large-Scale Mobile Electric Vehicle Charging in Smart Grids: A Reliability Perspective. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.688034

Artículos más leídos del mismo autor/a