Mecanismos intrínsecos y extrínsecos de mycobacterium tuberculosis que fundamentan la resistencia a los antimicrobianos Intrinsic and extrinsic mechanisms of mycobacterium tuberculosis that support antimicrobial resistance

Contenido principal del artículo

Gabriela Valenzuela Sánchez
Gabriela Aguilar Gabilanes
Gabriela Echeverría-Valencia

Resumen

Mycobacterium tuberculosis es el agente causal de la tuberculosis (TB), una enfermedad infecciosa de gran importancia para la salud pública debido al creciente número de pacientes que la padecen en coinfección con el VIH y a que, después de la pandemia de COVID-19, se ha convertido en la principal causa de muerte por un agente infeccioso (Organización Mundial de la Salud [OMS], 2024a). El tratamiento antibiótico frente a la tuberculosis es complejo, costoso y a menudo desencadena efectos adversos. Además, el aparecimiento de la resistencia a los antimicrobianos, que ocurre con cada vez mayor frecuencia, hace necesaria la comprensión profunda de los mecanismos tanto intrínsecos como extrínsecos que favorecen la evasión de la respuesta inmune y la resistencia al tratamiento. Este artículo presenta una revisión de las características biológicas propias e intrínsecas de MTB que le permiten resistir a los antibióticos. Asimismo, este trabajo explora los diversos cambios y mutaciones que han escapado a la presión de selección y han conducido al aparecimiento de cepas medianamente resistentes y extremadamente resistentes. Dada la falta de una vacuna protectora y eficiente, el abordaje de la comprensión del patógeno y la interacción patógeno-hospedador para la generación de nuevas estrategias farmacológicas y el desarrollo de nuevos antibióticos requiere un conocimiento y una comprensión más profundos del área.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Valenzuela Sánchez, G., Aguilar Gabilanes, G., & Echeverría Valencia, G. (2025). Mecanismos intrínsecos y extrínsecos de mycobacterium tuberculosis que fundamentan la resistencia a los antimicrobianos: Intrinsic and extrinsic mechanisms of mycobacterium tuberculosis that support antimicrobial resistance. Revista Científica Multidisciplinar G-Nerando, 6(2), Pág. 164 – 182. https://doi.org/10.60100/rcmg.v6i2.730
Sección
Artículos

Citas

Batt, S. M., Burke, C. E., Moorey, A. R., & Besra, G. S. (2020). Antibiotics and resistance: The two-sided coin of the mycobacterial cell wall. Cell Surface (Amsterdam, Netherlands), 6, 100044. https://doi.org/10.1016/j.tcsw.2020.100044

Billows, N., Phelan, J., Xia, D., Peng, Y., Clark, T. G., & Chang, Y. M. (2024). Large-scale statistical analysis of Mycobacterium tuberculosis genome sequences identifies compensatory mutations associated with multi-drug resistance. Scientific Reports, 14(1), 12312. https://doi.org/10.1038/s41598-024-62946-8

Brites, D., & Gagneux, S. (2015). Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunological Reviews, 264(1), 6–24. https://doi.org/10.1111/imr.12264

Calvanese, L., Falcigno, L., Maglione, C., Marasco, D., Ruggiero, A., Squeglia, F., Berisio, R., & D'Auria, G. (2014). Structural and binding properties of the PASTA domain of PonA2, a key penicillin binding protein from Mycobacterium tuberculosis. Biopolymers, 101(7), 712–719. https://doi.org/10.1002/bip.22447

Chen, W., Biswas, T., Porter, V. R., Tsodikov, O. V., & Garneau-Tsodikova, S. (2011). Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9804–9808. https://doi.org/10.1073/pnas.1105379108

Chew, K., Green, K. D., & Garneau-Tsodikova, S. (2011). The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis is a novel acetyltransferase. Journal of the American Chemical Society, 133(46), 18590–18593. https://doi.org/10.1021/ja207797u

Dye, C., & Williams, B. G. (2010). The population dynamics and control of tuberculosis. Science (New York, N.Y.), 328(5980), 856–861. https://doi.org/10.1126/science.1185449

Dulberger, C. L., Rubin, E. J., & Boutte, C. C. (2020a). The mycobacterial cell envelope - a moving target. Nature Reviews. Microbiology, 18(1), 47–59. https://doi.org/10.1038/s41579-019-0273-7

Dulberger, C. L., Rubin, E. J., & Boutte, C. C. (2020b). The mycobacterial cell envelope - a moving target. Nature Reviews. Microbiology, 18(1), 47–59. https://doi.org/10.1038/s41579-019-0273-7 Nota: Se ha mantenido esta duplicación para reflejar las citas (10) y (11) del texto original, aunque en un artículo real se citaría como (Dulberger et al., 2020) en ambas ocasiones si se refieren al mismo trabajo.

Erdemli, S. B., Gupta, R., Bishai, W. R., Lamichhane, G., Amzel, L. M., & Bianchet, M. A. (2012). Targeting the cell wall of Mycobacterium tuberculosis: Structure and mechanism of L,D-transpeptidase 2. Structure (London, England: 1993), 20(12), 2103–2115. https://doi.org/10.1016/j.str.2012.09.016

Favrot, L., Grzegorzewicz, A. E., Lajiness, D. H., Marvin, R. K., Boucau, J., Isailovic, D., Jackson, M., & Ronning, D. R. (2013). Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Nature Communications, 4, 2748. https://doi.org/10.1038/ncomms3748

Gao, W., Wang, W., Li, J., Gao, Y., Zhang, S., Lei, H., Li, T., & He, J. (2024). Drug-resistance characteristics, genetic diversity, and transmission dynamics of multidrug-resistant or rifampicin-resistant Mycobacterium tuberculosis from 2019 to 2021 in Sichuan, China. Antimicrobial Resistance and Infection Control, 13(1), 125. https://doi.org/10.1186/s13756-024-01482-6

Garima, K., Pathak, R., Tandon, R., Rathor, N., Sinha, R., Bose, M., & Varma-Basil, M. (2015). Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis (Edinburgh, Scotland), 95(2), 155–161. https://doi.org/10.1016/j.tube.2015.01.005

Garzan, A., Willby, M. J., Ngo, H. X., Gajadeera, C. S., Green, K. D., Holbrook, S. Y., Hou, C., Posey, J. E., Tsodikov, O. V., & Garneau-Tsodikova, S. (2017). Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis Inhibitors. ACS Infectious Diseases, 3(4), 302–309. https://doi.org/10.1021/acsinfecdis.6b00193

Genestet, C., Refrégier, G., Hodille, E., Zein-Eddine, R., Le Meur, A., Hak, F., Barbry, A., Westeel, E., Berland, J. L., Engelmann, A., Verdier, I., Lina, G., Ader, F., Dray, S., Jacob, L., Massol, F., Venner, S., Dumitrescu, O., & Lyon TB study group. (2022). Mycobacterium tuberculosis genetic features associated with pulmonary tuberculosis severity. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 125, 74–83. https://doi.org/10.1016/j.ijid.2022.10.026

Ghosh, A., N, S., & Saha, S. (2020). Survey of drug resistance associated gene mutations in Mycobacterium tuberculosis, ESKAPE and other bacterial species. Scientific Reports, 10(1), 8957. https://doi.org/10.1038/s41598-020-65766-8

Gokulan, K., Khare, S., Cerniglia, C. E., Foley, S. L., & Varughese, K. I. (2018). Structure and Inhibitor Specificity of L,D-Transpeptidase (LdtMt2) from Mycobacterium tuberculosis and Antibiotic Resistance: Calcium Binding Promotes Dimer Formation. The AAPS Journal, 20(2), 44. https://doi.org/10.1208/s12248-018-0193-x

Green, K. D., Pricer, R. E., Stewart, M. N., & Garneau-Tsodikova, S. (2015). Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria. ACS Infectious Diseases, 1(6), 272–283. https://doi.org/10.1021/acsinfecdis.5b00036

Gupta, A. K., Katoch, V. M., Chauhan, D. S., Sharma, R., Singh, M., Venkatesan, K., & Sharma, V. D. (2010a). Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microbial Drug Resistance (Larchmont, N.Y.), 16(1), 21–28. https://doi.org/10.1089/mdr.2009.0054

Gupta, A. K., Katoch, V. M., Chauhan, D. S., Sharma, R., Singh, M., Venkatesan, K., & Sharma, V. D. (2010b). Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microbial Drug Resistance (Larchmont, N.Y.), 16(1), 21–28. https://doi.org/10.1089/mdr.2009.0054 Nota: Se ha mantenido esta duplicación para reflejar las citas (37) y (41) del texto original, aunque en un artículo real se citaría como (Gupta et al., 2010) en ambas ocasiones si se refieren al mismo trabajo.

Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373. https://doi.org/10.1093/femsre/fux011

Hameed, H. M. A., Islam, M. M., Chhotaray, C., Wang, C., Liu, Y., Tan, Y., Li, X., Tan, S., Delorme, V., Yew, W. W., Liu, J., & Zhang, T. (2018). Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis Strains. Frontiers in Cellular and Infection Microbiology, 8, 114. https://doi.org/10.3389/fcimb.2018.00114

Jones, R. M., Adams, K. N., Eldesouky, H. E., & Sherman, D. R. (2022). The evolving biology of Mycobacterium tuberculosis drug resistance. Frontiers in Cellular and Infection Microbiology, 12, 1027394. https://doi.org/10.3389/fcimb.2022.1027394

Kardan-Yamchi, J., Kazemian, H., Haeili, M., Harati, A. A., Amini, S., & Feizabadi, M. M. (2019). Expression analysis of 10 efflux pump genes in multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis clinical isolates. Journal of Global Antimicrobial Resistance, 17, 201–208. https://doi.org/10.1016/j.jgar.2019.01.003

Karbalaei Zadeh Babaki, M., Soleimanpour, S., & Rezaee, S. A. (2017). Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: Biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microbial Pathogenesis, 112, 20–29. https://doi.org/10.1016/j.micpath.2017.08.040

Költringer, F. A., Annerstedt, K. S., Boccia, D., Carter, D. J., & Rudgard, W. E. (2023). The social determinants of national tuberculosis incidence rates in 116 countries: A longitudinal ecological study between 2005-2015. BMC Public Health, 23(1), 337. https://doi.org/10.1186/s12889-023-15213-w

Lamrabet, O., Ghigo, E., Mège, J. L., Lepidi, H., Nappez, C., Raoult, D., & Drancourt, M. (2014). MspA-Mycobacterium tuberculosis-transformant with reduced virulence: The "unbirthday paradigm". Microbial Pathogenesis, 76, 10–18. https://doi.org/10.1016/j.micpath.2014.08.003

Laws, M., Jin, P., & Rahman, K. M. (2022). Efflux pumps in Mycobacterium tuberculosis and their inhibition to tackle antimicrobial resistance. Trends in Microbiology, 30(1), 57–68. https://doi.org/10.1016/j.tim.2021.05.00

Liu, Q., Zuo, T., Xu, P., Jiang, Q., Wu, J., Gan, M., Yang, C., Prakash, R., Zhu, G., Takiff, H. E., & Gao, Q. (2018). Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis?. Emerging Microbes & Infections, 7(1), 98. https://doi.org/10.1038/s41426-018-0101-6

Long, Y., Wang, B., Xie, T., Luo, R., Tang, J., Deng, J., & Wang, C. (2024). Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiology Spectrum, 12(1), e0251023. https://doi.org/10.1128/spectrum.02510-23

Mailaender, C., Reiling, N., Engelhardt, H., Bossmann, S., Ehlers, S., & Niederweis, M. (2004). The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology (Reading, England), 150(Pt 4), 853–864. https://doi.org/10.1099/mic.0.26902-0

Mathema, B., Andrews, J. R., Cohen, T., Borgdorff, M. W., Behr, M., Glynn, J. R., Rustomjee, R., Silk, B. J., & Wood, R. (2017). Drivers of Tuberculosis Transmission. The Journal of Infectious Diseases, 216(Suppl 6), S644–S653. https://doi.org/10.1093/infdis/jix354

Miryala, S. K., Anbarasu, A., & Ramaiah, S. (2019). Impact of bedaquiline and capreomycin on the gene expression patterns of multidrug-resistant Mycobacterium tuberculosis H37Rv strain and understanding the molecular mechanism of antibiotic resistance. Journal of Cellular Biochemistry, 120(9), 14499–14509. https://doi.org/10.1002/jcb.28711

Naz, S., Paritosh, K., Sanyal, P., Khan, S., Singh, Y., Varshney, U., & Nandicoori, V. K. (2023). GWAS and functional studies suggest a role for altered DNA repair in the evolution of drug resistance in Mycobacterium tuberculosis. eLife, 12, e75860. https://doi.org/10.7554/eLife.75860

Nimmo, C., Millard, J., Faulkner, V., Monteserin, J., Pugh, H., & Johnson, E. O. (2022). Evolution of Mycobacterium tuberculosis drug resistance in the genomic era. Frontiers in Cellular and Infection Microbiology, 12, 954074. https://doi.org/10.3389/fcimb.2022.954074

Organización Mundial de la Salud. (2021). WHO consolidated guidelines on tuberculosis: Module 4: Treatment: Drug-resistant tuberculosis treatment. https://www.who.int/publications/i/item/9789240048126

Organización Mundial de la Salud. (2022). WHO consolidated guidelines on tuberculosis: Module 4: Treatment: Drug-susceptible tuberculosis treatment. https://www.who.int/publications/i/item/9789240048126

Organización Mundial de la Salud. (2024a). Global tuberculosis report 2024. https://www.who.int/publications/i/item/9789240101531

Pagán, A. J., Yang, C. T., Cameron, J., Swaim, L. E., Ellett, F., Lieschke, G. J., & Ramakrishnan, L. (2015). Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment. Cell Host & Microbe, 18(1), 15–26. https://doi.org/10.1016/j.chom.2015.06.008

Pisu, D., Huang, L., Grenier, J. K., & Russell, D. G. (2020). Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions. Cell Reports, 30(2), 335–350.e4. https://doi.org/10.1016/j.celrep.2019.12.033

Punetha, A., Green, K. D., Garzan, A., Thamban Chandrika, N., Willby, M. J., Pang, A. H., Hou, C., Holbrook, S. Y. L., Krieger, K., Posey, J. E., Parish, T., Tsodikov, O. V., & Garneau-Tsodikova, S. (2021). Structure-based design of haloperidol analogues as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis to overcome kanamycin resistance. RSC Medicinal Chemistry, 12(11), 1894–1909. https://doi.org/10.1039/d1md00239b

Punetha, A., Ngo, H. X., Holbrook, S. Y. L., Green, K. D., Willby, M. J., Bonnett, S. A., Krieger, K., Dennis, E. K., Posey, J. E., Parish, T., Tsodikov, O. V., & Garneau-Tsodikova, S. (2020). Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from Mycobacterium tuberculosis. ACS Chemical Biology, 15(6), 1581–1594. https://doi.org/10.1021/acschembio.0c00184

Ramón-García, S., Martín, C., Thompson, C. J., & Aínsa, J. A. (2009). Role of the Mycobacterium tuberculosis P55 efflux pump in intrinsic drug resistance, oxidative stress responses, and growth. Antimicrobial Agents and Chemotherapy, 53(9), 3675–3682. https://doi.org/10.1128/AAC.00550-09

Raymond, J. B., Mahapatra, S., Crick, D. C., & Pavelka, M. S., Jr. (2005). Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. The Journal of Biological Chemistry, 280(1), 326–333. https://doi.org/10.1074/jbc.M411006200

Remm, S., Earp, J. C., Dick, T., Dartois, V., & Seeger, M. A. (2022). Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiology Reviews, 46(1), fuab050. https://doi.org/10.1093/femsre/fuab050

Rens, C., Laval, F., Wattiez, R., Lefèvre, P., Dufrasne, F., Daffé, M., & Fontaine, V. (2018). I3-Ag85 effect on phthiodiolone dimycocerosate synthesis. Tuberculosis (Edinburgh, Scotland), 108, 93–95. https://doi.org/10.1016/j.tube.2017.10.007

Ryndak, M. B., & Laal, S. (2019). Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Frontiers in Cellular and Infection Microbiology, 9, 299. https://doi.org/10.3389/fcimb.2019.00299

Schoonmaker, M. K., Bishai, W. R., & Lamichhane, G. (2014). Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to beta-lactams. Journal of Bacteriology, 196(7), 1394–1402. https://doi.org/10.1128/JB.01396-13

Soroka, D., Li de la Sierra-Gallay, I., Dubée, V., Triboulet, S., van Tilbeurgh, H., Compain, F., Ballell, L., Barros, D., Mainardi, J. L., Hugonnet, J. E., & Arthur, M. (2015). Hydrolysis of clavulanate by Mycobacterium tuberculosis beta-lactamase BlaC harboring a canonical SDN motif. Antimicrobial Agents and Chemotherapy, 59(9), 5714–5720. https://doi.org/10.1128/AAC.00598-15

Speer, A., Rowland, J. L., Haeili, M., Niederweis, M., & Wolschendorf, F. (2013). Porins increase copper susceptibility of Mycobacterium tuberculosis. Journal of Bacteriology, 195(22), 5133–5140. https://doi.org/10.1128/JB.00763-13

Tang, X., Deng, W., & Xie, J. (2012). Novel insights into Mycobacterium antigen Ag85 biology and implications in countermeasures for M. tuberculosis. Critical Reviews in Eukaryotic Gene Expression, 22(3), 179–187. https://doi.org/10.1615/critreveukargeneexpr.v22.i3.10

Tiemersma, E. W., van der Werf, M. J., Borgdorff, M. W., Williams, B. G., & Nagelkerke, N. J. (2011). Natural history of tuberculosis: Duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: A systematic review. PloS One, 6(4), e17601. https://doi.org/10.1371/journal.pone.0017601

Uren, C., Hoal, E. G., & Möller, M. (2021). Mycobacterium tuberculosis complex and human coadaptation: A two-way street complicating host susceptibility to TB. Human Molecular Genetics, 30(R1), R146–R153. https://doi.org/10.1093/hmg/ddaa254

Wang, F., Cassidy, C., & Sacchettini, J. C. (2006). Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 50(8), 2762–2771. https://doi.org/10.1128/AAC.00320-06

Wang, H., Liu, D., & Zhou, X. (2023). Effect of Mycolic Acids on Host Immunity and Lipid Metabolism. International Journal of Molecular Sciences, 25(1), 396. https://doi.org/10.3390/ijms25010396

Warrier, T., Tropis, M., Werngren, J., Diehl, A., Gengenbacher, M., Schlegel, B., Schade, M., Oschkinat, H., Daffe, M., Hoffner, S., Eddine, A. N., & Kaufmann, S. H. (2012). Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrobial Agents and Chemotherapy, 56(4), 1735–1743. https://doi.org/10.1128/AAC.05742-11

Wivagg, C. N., Wellington, S., Gomez, J. E., & Hung, D. T. (2016). Loss of a Class A Penicillin-Binding Protein Alters beta-Lactam Susceptibilities in Mycobacterium tuberculosis. ACS Infectious Diseases, 2(2), 104–110. https://doi.org/10.1021/acsinfecdis.5b00119

Xu, Z., Zhou, A., Wu, J., Zhou, A., Li, J., Zhang, S., Wu, W., Karakousis, P. C., & Yao, Y. F. (2018). Transcriptional Approach for Decoding the Mechanism of rpoC Compensatory Mutations for the Fitness Cost in Rifampicin-Resistant Mycobacterium tuberculosis. Frontiers in Microbiology, 9, 2895. https://doi.org/10.3389/fmicb.2018.02895